CUFT Database

Beginning in 2009, CUFTanalytics has sourced publicly filed credit agreements from the United States Securities and Exchange Commission using its proprietary search algorithm.  The documents are reviewed, and the data is gathered and maintained in a database (the “CUFT Database”).  In addition, we add to this transactional data the most current credit risk data (Standard & Poor (S&P)’s and Moody’s Investor Services credit ratings and S&P’s Creditscores).  Finally, all data is supported by actual agreements.

The CUFT Database is built specifically for transfer pricing purposes.  CUFTanalytics uses this data for consulting purposes, however the senior loan data from the CUFT Database is licensed to Bureau van Dijk for inclusion in their transfer pricing solution, TP Catalyst.  For more details regarding subscriptions to the loan module within TP Catalyst please see their website

In general, we add upwards of 1,100 to 1,200 or more senior loan records to our CUFT Database each year.  The below tables provide a snapshot of our senior loan database:

 

Based on Credit Risk Measures

Avg Credit Rating Total 2017 2016 2015 2014 2013 2012 2009 - 2011
A- and above 264  43  42  49  33  15  22  60 
BBB- to BBB+ 1,235  159  196  188  183  132  139  238 
BB- to BB+ 1,856  269  248  250  221  243  221  404 
B- to B+ 1,789  271  213  149  229  265  236  426 
Below B- 167  23  30  16  18  17  55 
Total Rated 5,311  765  729  652  684  672  626  1,183 
Total Non Rated 4,108  444  525  521  458  473  480  1,207 
Total Records 9,419  1,209  1,254  1,173  1,142  1,145  1,106  2,390 

* Note that the average credit rating is the average between the respective Moody's credit rating and the S&P credit rating for the borrower. If the borrower is rated by just one of those rating agencies than the average rating is the rating given by the rating agency that has rated the borrower. If the ratings of the two rating agencies differ by an even number of notches it is the middle rating that is the average credit rating. If the ratings differ by an odd number of notches then the average credit rating is calculated as the upper rating less (n - 1)/2, where n is the number of notches that the credit rating agencies differ.

 

S&P Creditscore Total 2017 2016 2015 2014 2013 2012 2009 - 2011
a- and above 542  70  70  95  80  37  66  124 
bbb- to bbb+ 2,277  249  291  298  283  271  276  609 
bb- to bb+ 3,098  390  425  369  342  349  391  832 
b- to b+ 2,711  345  323  312  361  387  278  705 
below b- 349  67  66  43  41  53  23  56 
Total Scored 8,977  1,121 1,175  1,117  1,107  1,097  1,034  2,326 
Total Non Scored 442  88  79  56  35  48  72  64 
Total Records 9,419  1,209 1,254  1,173  1,142  1,145  1,106  2,390 

 

 

Based on Industry

Major Industry Group SIC codes Total 2017 2016 2015 2014 2013 2012 2009 - 2011
Agriculture, Forestry & Fishing 01 to 09 63  12  17 
Mining 10 to 14 421  39  42  45  61  64  57  113 
Construction 15 to 17 184  28  24  30  20  22  23  37 
Manufacturing 20 to 39 4,090  501  580  577  465  453  463  1,051 
Transportation, Communications, Electric, Gas & Sanitary Services 40 to 49 1,444  217  179  173  159  177  189  350 
Wholesale Trade 50 to 51 406  42  61  45  58  60  49  91 
Retail Trade 52 to 59 747  95  106  80  101  99  83  183 
Finance, Real Estate & Insurance 60 to 67 118  23  20  14  14  18  21 
Services 70 to 89 1,946  259  245  196  255  244  220  527 
Totals 9,419  1,209  1,254  1,173  1,142  1,145  1,106  2,390 

 

Did You Know?

The senior loan data from the CUFT Database is subscribed through BvD's TP Catalyst by tax administrations, multinational corporations and large and small accounting and tax consulting firms across the world spanning nearly 30 different countries.  Contact Us to learn more.

Featured Pages

  • CUFTanalytics regularly publishes transfer pricing research and analysis - Learn More
  • The case between Chevron Australia and the ATO has been decided - Learn More
  • CUFTanalytics posts the latest news on BEPS for intercompany financial transactions - Learn More
  •  

Recent Publications

  • Intercompany Financial Transactions:

    Factors to Consider In Analyzing the Impact of Implicit Support
    (Bloomberg BNA: 20/2/2014)

  • Transfer Pricing and Intra-group Cash Pooling:

    (Bloomberg BNA: 14/2/2011)

  • Intercompany Financial Transactions:

    Selecting Comparable Data 
    (Bloomberg BNA: 22/4/2010)

CUFTanalytics

A Calgary Alberta Canada company
Email: inquiry@cuftanalytics.com
Copyright 2018 by CUFTanalytics Terms Of Use Privacy Statement
Design: CuftClassic by IPW